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Molecular dynamics study of a phase-separating fluid mixture under shear flow
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Molecular dynamics simulation is carried out to study domain structures and rheological properties of a
two-dimensional phase-separating binary fluid mixture under shear flow. In the early stage of the phase
separation, anisotropic composition fluctuations appear immediately after the quench. As the domain grows,
the anisotropy in the composition fluctuations increases. The quenched system eventually reaches a dynamical
steady state, in which anisotropic domain structures are preserved. In the steady state, the shortest characteristic
length scaleR, of domains decreases with increasing shear yaasR, ~y~ . Stringlike domain structures
are observed in the strong shear regime, whereas randomly fluctuating patterns are observed in the weak shear
regime. Moreover, the excess viscosityy is found to decrease with increasing shear rateﬁa;sv'y’l’z,
indicating that the phase-separating fluid mixtures are highly non-Newtonian because of domain deformations.
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PACS numbes): 83.20.Jp, 64.75:g, 83.50.AX

[. INTRODUCTION larly in domain structures and rheological propertiég—
13]. Analytical approache$14,15 have also been devel-

Spinodal decomposition occurs when a uniform system i®ped. However, because of the complexity of the problem,
suddenly quenched into the unstable two-phase region. Spaatisfactory understanding has not yet been fully achieved
tial inhomogeneities then emerge, grow into larger domainstheoretically. On the other hand, computer simulation prom-
and eventually arrive at a two-phase equilibrium system. Irises to shed some light on the spinodal decomposition under
the past three decades, phase separation has been extensi\f@‘ﬁ‘F fields[16-19. _
studied[1], both experimentally and theoretically. A number _ e purpose of this paper is to study the dependence of
of computer simulation§2—9] have also been carried out. Ri 0N the shear rate as well as the features of the domain
These studies not only provide physical insights into theStructure in the steady stat®((is not examined here because
complex behavior, but also have yielded quantitative results! can qwck.ly reach the size O.f the S|mulat|on SVSIEAT“ .
Among others, the most significant findings are the domair?the_r quantity considered |n.th|s paper s the excess V|§c05|ty
growth laws and the scaling properties of the structure factof 7= Tmix ~ Tone, WHEre 7y is the viscosity of a fluid mix-
in the spinodal decomposition. It is remarkable that mutuaIIyure andone IS the viscosity of the one-component fluid at

nsistent results on the domain arowth have been obtain gﬂuilibrium states. This quantity characterizes the domain
consistent results on the domain gro ave been obtaiNge, yiihution and can exhibit strong non-Newtonian character
using quite different simulation methods, including time-

if the domains are strongly deformed by the shear. We note
dependent Ginzburg-Landd@,3], lattice Boltzmann[4,5], gy y

i that Padilla and Toxvaerd have studied a similar system by
cellular automat46], and molecular dynamio®D) [7-9].  yp simulation [19]. That work focused on the time-

A notable example is the growth laiR~t for the charac-  gependent properties of spinodal decompositions in the pres-
teristic lengthR of the fluctuation in the late stage. It is found ence of shear flow. Here we mainly investigate domain struc-

that the exponent=% anda=1 for two-dimensional2D)  tures and rheological properties in the steady state.
and three-dimension&BD) fluid mixtures, respectively.

Most computer simulation studies have thus far focused Il SIMULATION
on isotropic phase separation, namely, phase separation un-

, ()

der no external field. Behaviors of phase separation under We have performed MD simulations for a 2D fluid mix-
external fields such as a velocity or temperature gradient réure. The mixture is composed of two particle specheand
main largely unexplored. It is expected that phase separatioB, which interact with each other via the Lennard-JofieB
behaviors under external fields are qualitatively differentpotential,
from the universal behavior in isotropic cadd€)]. For ex-
. L. . . 12 6

ample, if a shear flow is imposed in the course of spinodal 4 LA 5. o
decomposition, the domain pattern will be anisotropic, that bij=4e€ Fij Uri;
is, Rj/R,>1, whereR| is the longest characteristic length
scale of domains an®, is the shortest one. It is also ex- wherer;; is the interparticle separatios;; =1 if the ith and
pected that the tendency of minimizing the surface free enjth particles are the same type, afg=0 if those are dif-
ergy (favoring growth ofR,) and the tendency of breaking ferent. For simplicity, here the two species are chosen to be
up of domains by the flovjsuppressing growth dR,) can identical; both have the same masssizeo, and interaction
balance each other at a steady state soRhatmains finite. parametek. All physical quantities are dimensionless in this

Recently, the spinodal decomposition under shear hapaper. Those are reduced basedmanos, and e [20]. The
been examined in a number of experimental studies, particypotentials are truncated a§=2.5. The total number of par-
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ticles N=Na+Ng is 30000; the number fractiora ll. RESULTS

=Na/N is taken to be 0.5the critical compositio)) the We note that phase separation under shear flow can be

number density is setto 0.8. The |mm|30|p|llty betweeh . divided into four regimes according to the magnitude of Rey-
and B components is introduced by removing the attractive

part of interaction for unlike pairs. Although the precise N0lds number Re YR?pl 7 and the reduced shear rage, :

value of the critical temperaturg, of the system is un- (i) Re>1 and yr,<1, (i) Re>1 and y7,>1, (iii) Re<1

known, T. was roughly estimated between 5 and 10. All and :y7'§< 1, and(iv) Re<1 and 'yT§> 1, where; is the

simulations were carried out for the temperatdre1 at  relaxation time of the composition fluctuations. The regimes

yvh|c_h A andB components of the fluid mixture are strongly '),T§<1 and'yr§>l normally refer to the so-called weak and

immiscible. strong shear regimes. In the present stugyis determined
For a system under flow, the temperature of the Systey the growth rate of thé(k,,,t) in a quiescent stafd 2,26

mus'F be monitored and controlle.d to eIimi_nate the V,iscou%erel(k,t) is the scattering intensity determined by taking
heating effect. However, the particle velocity(t) contains 4, angler average of the scattering function
two contributions: the thermal velocitﬁh(t) and the instan-

taneous streaming velocity(r;(t),t). The latter is given by 1 [|Na 2
S(kt)=5-1 |2 expik-r)| ), 5)
N Na\| 5
21 V(D &(ri;) andk,(=0.9 in the present casis the peak wave number in
u(ri(t),t)= J—' (2)  an early stage spinodal decomposition. We foupe 8 and
h Re=10. Thus, our simulations for three low shear ratgs (
121 a(rij) =0.02, 0.05, and 0)icorrespond to regimé), while those

for three high shear rategy€0.2, 0.5, and 1.0) correspond
to regime (ii). Note also that phase separations studied in
most experiments so far correspond to the low Reynolds
number regiméiii ) or (iv).

where §(r;;) =0 for rj;>d and 5(r;;) =1 for rjj<d. Here,
d=28 is taken. We found the simulation results are insensi
tive to the choice ofd as long as ¥d<R, . The thermal
velocity, which was actually used for calculating the tem-

perature, is given by A. Domain structures
In Figs. 1-6, we show the time evolution of domain struc-
v}h(t)=vi(t)—u(ri(t),t). (3)  tures during phase separation for six different shear rates:

y=0.02, 0.05, 0.1, 0.2, 0.5, and 1.0. For illustrative purpose

Specifically, the simulations were carried out as foIIows..Only the distribution ofA particles is shown. The correspond-

(i) The system was equilibrated &t=20 and at a steady ing scattering patternS(k,t) are also displayed in these fig-

: ) ures. Note that the velocity gradient is imposed in the verti-
shear ratey=0.02-1.0. The Lees-Edwards moving bound- .., (y) direction and the flow is in the horizontak)

ary condition[21] was adopted to enforce the steady sheajrection, In the early stage, it is found that the composition

flow. (i) At time t=0, the system was quenched instanta-y,ctyations appear immediately after the quench and then
neously to a lower temperatufie=1 via scaling the thermal ¢\ olve as in usual spinodal decomposition. However, large
velocity v{" by a factory1/20, while u(r;(0),0), y andp  anisotropies in composition fluctuations are also observed.
were fixed.(iii) The simulations proceeded at the fixed tem-The higher the shear rate, the larger the anisotropies appear.
peratureT=1. The Gaussian constraint method was em-This is clearly seen in the scattering patterns at titme
ployed to keep the temperatuf22] fixed. The leapfrog al- =12.5 after the quench. Moreover, when the domain grows
gorithm [23] was used to solve the differential equationsthe anisotropies in the composition fluctuations increase
with an integration time stept=0.0025 forT=20 or 0.005 greatly, and as a result, the scattering patterns almost col-
for T=1. Since we do not assume any profiles of streamindapse to they axis. To qualitatively explain this behavior we
velocity a priori, the thermostat is in fact the profile unbiased invoked a dimensional analysibased on the Navier-Stokes
thermosta{PUT) [24,25. The use of PUT is essential in the equation, 7,.—= 7R/0s, Wherer,q.iS a characteristic time
present study because the instantaneous flow field is not unécale of motions in a fluid system with a length sc&e
form but fluctuating in time and space due to the existence ofiscosity , and surfacgline) tensionog [27]. It indicates
domains. The magnitude of fluctuation is ab¢u;)®=0.2  that larger domains have a longer relaxation time, and thus

to 0.5 (depending ony), where larger domains should be deformed more strongly by the
shear.
_ . As mentioned aboveR, is expected to remain finite in
Suy=u(ri(t), )= yyig @ the steady state under shear flow, although this has not yet

been fully confirmed. We attempted to verify this via the
ande, is a unit vector(1,0). It is found that a higher shear computer simulation. To this end, a large-scale=Q00,
rate leads to a larger fluctuation &u; . It is also found that whereL is the cell siz¢ simulation was carried out for a long
the eddy viscosityye=(puyuy)/y accounts for nearly 10% time until the steady state was realizet~(000 at y
of the total viscosity innx, Whereasyg is negligible in  =0.02). Domain structures at the end of the simulations are
Tone- shown in the bottom of Figs. 1 — 6. We found tfat indeed



PRE 59 MOLECULAR DYNAMICS STUDY OF A PHASE- ... 3225

FIG. 1. Time evolution of the domain structureyat 0.02. The FIG. 2. Time evolution of the domain structure and the scatter-
system lengthL is 193.6. The corresponding scattering patternsing patterns aty=0.05.
S(k,t) are also shown with-2.6<k, ,k,<2.6.

) o ) tions of R, with :y=0, 0.02, and 0.05 are shown in Fig. 7,
remains finite under all shear rates, both in the weak ang,m which one can see that the steady state is realized with
strong shear regimes, and decreases as the shear rate dfzar flow. In the following parts, we analyze properties in
creases. To obtain time e\_/olut|ons and shear-rate depgnden@@ steady state. Data are taken by averaging many instanta-
of R, , we calculated the first momeki(6) of the scattering peoys values, and error bars indicate variances of the data.

patterns by fitting simulation data with the elliptic function, Figure 8 shows the shear rate dependenc®,of Interest-

N2 ingly, the data support the power-law relatiét) ~y~ 3
E) Sint(0— 6,), which holds in both weak and strong shear regimes; no clear
tendency of a kinetic phase transition is detectedRin
aroundyr;=1.
whereR, , R, and 6, are fitting parameters. Time evolu- Figures 1 and 2 also show that when the shear ‘[ﬁEe

2
[k1(0)12=(%) cos(6— 6p) +
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FIG. 3. Time evolution of the domain structure and the scatter- FIG. 4. Time evolution of the domain structure and the scatter-
ing patterns aty=0.1. ing patterns aty="0.2.

<1, domain patterns are deformed as if a simple shear desyow strong streaks in thedirection. Similar domain struc-
formation is imposed on an isotropic bicontinuous patternyres are also observed in polymer mixtures with Reynolds
domains are still randomly fluctuating even in the Steadynumber Re< 1 [12], where the structures are callé string
states. Wheryr,~1, a qualitative change emerges as showrphase To our knowledge, sucktring phasedomain struc-

in Figs. 3 or 4. At even higher shear rates, domains argures have not yet been observed experimentally in the Re
strongly elongated along the flow direction and exhibit> regime. This simulation gives the first picture of 2D
nearly interconnected stringlike structures in the stead¥tring phaseunder shear flow in the Rel regime. It is still
states, as seen in Figs. 5 and 6, wherg>1. The corre- an open question whether similar 3D domain structures can
sponding scattering patterns collapse almost to/theis and  be observed in real experiments.
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FIG. 5. Time evolution of the domain structure and the scatter- FIG. 6. Time evolution of the domain structure and the scatter-
ing patterns aty=0.5. ing patterns aty=1.0.

B. Rheology average streaming velocityye,, andrj is the « compo-
We also studied rheological properties of the phasenent of the vector;; =r;—r;. The calculated temporal shear
separating fluid under shear. It is expected that the fluigtress—Pyy is plotted as a function of the shear stran
would exhibit strongly non-Newtonian viscoelastic behavior.= yt in Fig. 9 (the quench started at=0). The shear stress

The stress tensor is given by first increases, showing a peak arouyrd 2, then decreases,
N s and eventually reaches to a stationary value. The initial in-
E a B_ _2 E r”r” 0”¢ @ crease in—P,, is due to domain formation and growth; the
Pug= Al mZ, viv; T 7T Wij ' subsequent decrease is due to domain elongation along the

flow direction. We should point out that large stress fluctua-

wherea,8=x,y, A is the area of the MD cely{" isthee tions appearing in the=0.02 case may be due to the finite
component of the velocity of thih particle relative to the size effect, because the stress increases considerably when
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domains are connected through the periodic boundary in the FIG- 9. The plot of the temporal shear stresB,, versus shear
y direction and decreases suddenly when the connections aggain y=ty.
broken. This behavior may not be seen in the real system. _
Figure 10 shows the normal stress differenlg=P,,  N; i.ncreases linearly with_increasing shear rate yogp<<1,
— P, versus the shear straipm. N; increases first withy for y7,>1, we foundN;~ y* with u=1/2.
because of the anisotropic domain deformation and then lev-
els off to a shear rate-dependent valirecontrastNj, is very
small for the one-component flyidThe rheological behavior
of the phase-separating fluid mixtures is quite similar to that We have performed molecular dynamics simulations in
of viscoelastic fluids such as polymer melts. 2D space to study domain structures and rheological proper-

The steady state viscosif@5] of the mixture,nn,x, and ties of phase-separating fluid mixtures under shear flow. In
that of the one-component fluidy,,., are plotted in Fig. 11 the early stage of the phase separation, we found that aniso-
as a function of the shear rate. It is easily seen that the fluittopic composition fluctuations emerge and evolve immedi-
mixture shows strong non-Newtonian behavigre., the ately into domains. The higher the shear rate, the stronger the
shear thinning even at the lowest shear ratg=0.02, Composition fluctuation anisotropy. In the intermediate stage,
whereas the one-component fluid shows Newtonian behavidh€ anisotropy increases as the domain grows. The phase-
in the regiony<0.1. The excess viscosity from domain con- separating ﬂ'.“"d mixture eve_ntually_ reache_s a dynamical
tributions can be calculated Vi&7= 7 — 7one. The shear steady state in v_vh|ch the_ anisotropic domain structures are
rate dependence d » is also plotted in Fig. 11. It is found preservedStrmghkg domain patterns aré seen in ;he strong
that A  increases with decreasing shear rate and can be gpear regime, while randomly ﬂuct_uatmg .0'0.”"3'” patterns

. i . are observed in the weak shear regime. This indicates a pos-

the same order agone for y=0.02. Our simulation suggests sibility of dynamical phase transition occurring ﬁvgzl.

another power-law relatiomd 7~y " with »=1/2.In Fig.  ynfortunately, this tendency has not been detecte®,in
12, we show the shear rate dependendd af We found that

IV. CONCLUDING REMARKS

10'F— .

10° - .

=P, -P,

10°

y=yt

FIG. 8. Shear rate dependence of the shortest average length
scale of domainR, . The solid line indicate®R, ~y~* with « FIG. 10. The plot of the normal stress differerieg,— Py, ver-
=1/3. sus shear straig=tvy.
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FIG. 11. The steady-state shear viscosity versus the shear rate. FIG. 12. Shear rate dependenceNgf. The solid lines describe
Shear thinning is observed for the mixture ¢ 0.02. The one- g power lawN, ~ y~# with two different exponentsy=1 and 1/2.
component fluid shows purely Newtonian behavior §6£0.1. The
excess ViSCOSIfyA 7= 7mix— 77one @CcOUNts for most of the shear A7 increases with decreasing shear rate and can be of the
thinning in 7. The solid line describes a power lafvy~y™"  same order agjone at y=0.02. MoreoverA 7 can be fitted
with v=1/2. by a power lawA 7~ y” with the exponent=1/2, in both

y7§<1 and 'y7'§>1 regimes. Finally, another power law,
We found thatR, remains a finite vaIue in the steady state ~Y* is also found, whereu=1 for 7T5<1 and
and depends on the shear rateRas-y~ 2. The stringlike
=1/2 for y7'§> 1.

patterns have not been observed experimentally in the high
Reynolds number regime.
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