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Molecular dynamics study of a phase-separating fluid mixture under shear flow
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Molecular dynamics simulation is carried out to study domain structures and rheological properties of a
two-dimensional phase-separating binary fluid mixture under shear flow. In the early stage of the phase
separation, anisotropic composition fluctuations appear immediately after the quench. As the domain grows,
the anisotropy in the composition fluctuations increases. The quenched system eventually reaches a dynamical
steady state, in which anisotropic domain structures are preserved. In the steady state, the shortest characteristic

length scaleR' of domains decreases with increasing shear rateġ asR';ġ21/3. Stringlike domain structures
are observed in the strong shear regime, whereas randomly fluctuating patterns are observed in the weak shear

regime. Moreover, the excess viscosityDh is found to decrease with increasing shear rate asDh;ġ21/2,
indicating that the phase-separating fluid mixtures are highly non-Newtonian because of domain deformations.
@S1063-651X~99!10703-7#

PACS number~s!: 83.20.Jp, 64.75.1g, 83.50.Ax
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I. INTRODUCTION

Spinodal decomposition occurs when a uniform system
suddenly quenched into the unstable two-phase region.
tial inhomogeneities then emerge, grow into larger doma
and eventually arrive at a two-phase equilibrium system
the past three decades, phase separation has been exten
studied@1#, both experimentally and theoretically. A numb
of computer simulations@2–9# have also been carried ou
These studies not only provide physical insights into
complex behavior, but also have yielded quantitative resu
Among others, the most significant findings are the dom
growth laws and the scaling properties of the structure fa
in the spinodal decomposition. It is remarkable that mutua
consistent results on the domain growth have been obta
using quite different simulation methods, including tim
dependent Ginzburg-Landau@2,3#, lattice Boltzmann@4,5#,
cellular automata@6#, and molecular dynamics~MD! @7–9#.
A notable example is the growth lawR;ta for the charac-
teristic lengthR of the fluctuation in the late stage. It is foun
that the exponenta. 2

3 anda.1 for two-dimensional~2D!
and three-dimensional~3D! fluid mixtures, respectively.

Most computer simulation studies have thus far focu
on isotropic phase separation, namely, phase separation
der no external field. Behaviors of phase separation un
external fields such as a velocity or temperature gradien
main largely unexplored. It is expected that phase separa
behaviors under external fields are qualitatively differe
from the universal behavior in isotropic cases@10#. For ex-
ample, if a shear flow is imposed in the course of spino
decomposition, the domain pattern will be anisotropic, t
is, Ri /R'.1, whereRi is the longest characteristic leng
scale of domains andR' is the shortest one. It is also ex
pected that the tendency of minimizing the surface free
ergy ~favoring growth ofR') and the tendency of breakin
up of domains by the flow~suppressing growth ofR') can
balance each other at a steady state so thatR' remains finite.

Recently, the spinodal decomposition under shear
been examined in a number of experimental studies, part
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larly in domain structures and rheological properties@11–
13#. Analytical approaches@14,15# have also been devel
oped. However, because of the complexity of the proble
satisfactory understanding has not yet been fully achie
theoretically. On the other hand, computer simulation pro
ises to shed some light on the spinodal decomposition un
flow fields @16–19#.

The purpose of this paper is to study the dependenc
R' on the shear rate as well as the features of the dom
structure in the steady state (Ri is not examined here becaus
it can quickly reach the size of the simulation system!. An-
other quantity considered in this paper is the excess visco
Dh[hmix2hone, wherehmix is the viscosity of a fluid mix-
ture andhone is the viscosity of the one-component fluid
equilibrium states. This quantity characterizes the dom
contribution and can exhibit strong non-Newtonian charac
if the domains are strongly deformed by the shear. We n
that Padilla and Toxvaerd have studied a similar system
MD simulation @19#. That work focused on the time
dependent properties of spinodal decompositions in the p
ence of shear flow. Here we mainly investigate domain str
tures and rheological properties in the steady state.

II. SIMULATION

We have performed MD simulations for a 2D fluid mix
ture. The mixture is composed of two particle species,A and
B, which interact with each other via the Lennard-Jones~LJ!
potential,

f i j 54eF S s

r i j
D 12

2d i j S s

r i j
D 6G , ~1!

wherer i j is the interparticle separation,d i j 51 if the i th and
j th particles are the same type, andd i j 50 if those are dif-
ferent. For simplicity, here the two species are chosen to
identical; both have the same massm, sizes, and interaction
parametere. All physical quantities are dimensionless in th
paper. Those are reduced based onm, s, and e @20#. The
potentials are truncated atr i j 52.5. The total number of par
3223 ©1999 The American Physical Society
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ticles N5NA1NB is 30 000; the number fractionxA
5NA /N is taken to be 0.5~the critical composition!; the
number densityr is set to 0.8. The immiscibility betweenA
and B components is introduced by removing the attract
part of interaction for unlike pairs. Although the preci
value of the critical temperatureTc of the system is un-
known, Tc was roughly estimated between 5 and 10. A
simulations were carried out for the temperatureT51 at
which A andB components of the fluid mixture are strong
immiscible.

For a system under flow, the temperature of the sys
must be monitored and controlled to eliminate the visco
heating effect. However, the particle velocityvi(t) contains
two contributions: the thermal velocityvi

th(t) and the instan-
taneous streaming velocityu„r i(t),t…. The latter is given by

u„r i~ t !,t…5

(
j 51

N

vj~ t !d~r i j !

(
j 51

N

d~r i j !

, ~2!

whered(r i j )50 for r i j .d and d(r i j )51 for r i j <d. Here,
d58 is taken. We found the simulation results are insen
tive to the choice ofd as long as 1,d<R' . The thermal
velocity, which was actually used for calculating the te
perature, is given by

v i
th~ t !5vi~ t !2u„r i~ t !,t…. ~3!

Specifically, the simulations were carried out as follow
~i! The system was equilibrated atT520 and at a steady
shear rateġ50.0221.0. The Lees-Edwards moving boun
ary condition@21# was adopted to enforce the steady sh
flow. ~ii ! At time t50, the system was quenched instan
neously to a lower temperatureT51 via scaling the therma
velocity vi

th by a factorA1/20, while u„r i(0),0…, ġ and r
were fixed.~iii ! The simulations proceeded at the fixed te
peratureT51. The Gaussian constraint method was e
ployed to keep the temperature@22# fixed. The leapfrog al-
gorithm @23# was used to solve the differential equatio
with an integration time stepDt50.0025 forT520 or 0.005
for T51. Since we do not assume any profiles of stream
velocity a priori, the thermostat is in fact the profile unbias
thermostat~PUT! @24,25#. The use of PUT is essential in th
present study because the instantaneous flow field is not
form but fluctuating in time and space due to the existenc
domains. The magnitude of fluctuation is about^~d ui!

2&50.2
to 0.5 ~depending onġ), where

dui5u„r i~ t !,t…2ġyiex ~4!

and ex is a unit vector~1,0!. It is found that a higher shea
rate leads to a larger fluctuation indui . It is also found that
the eddy viscosityhE5^ruxuy&/ġ accounts for nearly 10%
of the total viscosity inhmix , whereashE is negligible in
hone.
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III. RESULTS

We note that phase separation under shear flow can
divided into four regimes according to the magnitude of Re
nolds number Re5ġR'

2 r/h and the reduced shear rateġtj :

~i! Re.1 and ġtj,1, ~ii ! Re.1 and ġtj.1, ~iii ! Re,1
and ġtj,1, and ~iv! Re,1 and ġtj.1, wheretj is the
relaxation time of the composition fluctuations. The regim
ġtj,1 andġtj.1 normally refer to the so-called weak an
strong shear regimes. In the present study,tj is determined
by the growth rate of theI (km ,t) in a quiescent state@12,26#.
Here I (k,t) is the scattering intensity determined by takin
an angler average of the scattering function

S~k,t !5
1

NA
K U(

i

NA

exp~ ik•r i !U2L , ~5!

andkm(.0.9 in the present case! is the peak wave number in
an early stage spinodal decomposition. We foundtj.8 and
Re.10. Thus, our simulations for three low shear ratesġ
50.02, 0.05, and 0.1! correspond to regime~i!, while those
for three high shear rates (ġ50.2, 0.5, and 1.0) correspon
to regime ~ii !. Note also that phase separations studied
most experiments so far correspond to the low Reyno
number regime~iii ! or ~iv!.

A. Domain structures

In Figs. 1–6, we show the time evolution of domain stru
tures during phase separation for six different shear ra
ġ50.02, 0.05, 0.1, 0.2, 0.5, and 1.0. For illustrative purpo
only the distribution ofA particles is shown. The correspond
ing scattering patternsS(k,t) are also displayed in these fig
ures. Note that the velocity gradient is imposed in the ve
cal ~y! direction and the flow is in the horizontal~x!
direction. In the early stage, it is found that the composit
fluctuations appear immediately after the quench and t
evolve as in usual spinodal decomposition. However, la
anisotropies in composition fluctuations are also observ
The higher the shear rate, the larger the anisotropies app
This is clearly seen in the scattering patterns at timet
512.5 after the quench. Moreover, when the domain gro
the anisotropies in the composition fluctuations incre
greatly, and as a result, the scattering patterns almost
lapse to they axis. To qualitatively explain this behavior w
invoked a dimensional analysis~based on the Navier-Stoke
equation!, t relax5hR/ss , wheret relax is a characteristic time
scale of motions in a fluid system with a length scaleR,
viscosity h, and surface~line! tensionss @27#. It indicates
that larger domains have a longer relaxation time, and t
larger domains should be deformed more strongly by
shear.

As mentioned above,R' is expected to remain finite in
the steady state under shear flow, although this has not
been fully confirmed. We attempted to verify this via th
computer simulation. To this end, a large-scale (L.200,
whereL is the cell size! simulation was carried out for a lon
time until the steady state was realized (t;1000 at ġ
50.02). Domain structures at the end of the simulations
shown in the bottom of Figs. 1 – 6. We found thatR' indeed
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remains finite under all shear rates, both in the weak
strong shear regimes, and decreases as the shear ra
creases. To obtain time evolutions and shear-rate depend
of R' , we calculated the first momentk1(u) of the scattering
patterns by fitting simulation data with the elliptic function

@k1~u!#225S R'

2p D 2

cos2~u2u0!1S Ri

2p D 2

sin2~u2u0!,

~6!

whereR' , Ri , and u0 are fitting parameters. Time evolu

FIG. 1. Time evolution of the domain structure atġ50.02. The
system lengthL is 193.6. The corresponding scattering patte
S(k,t) are also shown with22.6<kx ,ky<2.6.
d
in-

nce

tions of R' with ġ50, 0.02, and 0.05 are shown in Fig.
from which one can see that the steady state is realized
shear flow. In the following parts, we analyze properties
the steady state. Data are taken by averaging many insta
neous values, and error bars indicate variances of the d
Figure 8 shows the shear rate dependence ofR' . Interest-
ingly, the data support the power-law relationR';ġ21/3

which holds in both weak and strong shear regimes; no c
tendency of a kinetic phase transition is detected inR'

aroundġtj.1.
Figures 1 and 2 also show that when the shear rateġtj

s
FIG. 2. Time evolution of the domain structure and the scat

ing patterns atġ50.05.



d
rn
d
w
a
bi
ad

lds

Re
D

can

te ter-

3226 PRE 59RYOICHI YAMAMOTO AND XIAO CHENG ZENG
,1, domain patterns are deformed as if a simple shear
formation is imposed on an isotropic bicontinuous patte
domains are still randomly fluctuating even in the stea
states. Whenġtj.1, a qualitative change emerges as sho
in Figs. 3 or 4. At even higher shear rates, domains
strongly elongated along the flow direction and exhi
nearly interconnected stringlike structures in the ste
states, as seen in Figs. 5 and 6, whereġtj.1. The corre-
sponding scattering patterns collapse almost to they axis and

FIG. 3. Time evolution of the domain structure and the scat

ing patterns atġ50.1.
e-
;
y
n
re
t
y

show strong streaks in they direction. Similar domain struc-
tures are also observed in polymer mixtures with Reyno
number Re,1 @12#, where the structures are calledthe string
phase. To our knowledge, suchstring phasedomain struc-
tures have not yet been observed experimentally in the
.1 regime. This simulation gives the first picture of 2
string phaseunder shear flow in the Re.1 regime. It is still
an open question whether similar 3D domain structures
be observed in real experiments.

r- FIG. 4. Time evolution of the domain structure and the scat

ing patterns atġ50.2.
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B. Rheology

We also studied rheological properties of the pha
separating fluid under shear. It is expected that the fl
would exhibit strongly non-Newtonian viscoelastic behavi
The stress tensor is given by

Pab5
1

AFm(
i 51

N

v i
av i

b2
1

2(i

N

(
j Þ i

N r i j
a r i j

b

r i j

]f

]r i j
G , ~7!

wherea,b5x,y, A is the area of the MD cell,v i
a is thea

component of the velocity of thei th particle relative to the

FIG. 5. Time evolution of the domain structure and the scat

ing patterns atġ50.5.
-
id
.

average streaming velocityġyiex , and r i j
a is the a compo-

nent of the vectorr i j 5r j2r i . The calculated temporal shea
stress2Pxy is plotted as a function of the shear straing

5ġt in Fig. 9 ~the quench started atg50). The shear stres
first increases, showing a peak aroundg.2, then decreases
and eventually reaches to a stationary value. The initial
crease in2Pxy is due to domain formation and growth; th
subsequent decrease is due to domain elongation along
flow direction. We should point out that large stress fluctu
tions appearing in theġ50.02 case may be due to the fini
size effect, because the stress increases considerably

r- FIG. 6. Time evolution of the domain structure and the scat

ing patterns atġ51.0.
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domains are connected through the periodic boundary in
y direction and decreases suddenly when the connection
broken. This behavior may not be seen in the real syst
Figure 10 shows the normal stress differenceN1[Pyy
2Pxx versus the shear straing. N1 increases first withg
because of the anisotropic domain deformation and then
els off to a shear rate-dependent value~in contrast,N1 is very
small for the one-component fluid!. The rheological behavio
of the phase-separating fluid mixtures is quite similar to t
of viscoelastic fluids such as polymer melts.

The steady state viscosity@25# of the mixture,hmix , and
that of the one-component fluid,hone, are plotted in Fig. 11
as a function of the shear rate. It is easily seen that the fl
mixture shows strong non-Newtonian behavior~i.e., the
shear thinning! even at the lowest shear rate,ġ50.02,
whereas the one-component fluid shows Newtonian beha
in the regionġ,0.1. The excess viscosity from domain co
tributions can be calculated viaDh5hmix2hone. The shear
rate dependence ofDh is also plotted in Fig. 11. It is found
that Dh increases with decreasing shear rate and can b
the same order ashone for ġ50.02. Our simulation suggest
another power-law relation,Dh;ġ2n with n.1/2. In Fig.
12, we show the shear rate dependence ofN1 . We found that

FIG. 7. Time evolutions ofR' at smallġ.

FIG. 8. Shear rate dependence of the shortest average le

scale of domain,R' . The solid line indicatesR';ġ2k with k
51/3.
he
are

.

v-

t

id

or

of

N1 increases linearly with increasing shear rate forġtj,1;
for ġtj.1, we foundN1;ġm with m.1/2.

IV. CONCLUDING REMARKS

We have performed molecular dynamics simulations
2D space to study domain structures and rheological pro
ties of phase-separating fluid mixtures under shear flow
the early stage of the phase separation, we found that an
tropic composition fluctuations emerge and evolve imme
ately into domains. The higher the shear rate, the stronge
composition fluctuation anisotropy. In the intermediate sta
the anisotropy increases as the domain grows. The ph
separating fluid mixture eventually reaches a dynam
steady state in which the anisotropic domain structures
preserved.Stringlike domain patterns are seen in the stro
shear regime, while randomly fluctuating domain patte
are observed in the weak shear regime. This indicates a
sibility of dynamical phase transition occurring atġtj.1.
Unfortunately, this tendency has not been detected inR' .

gth

FIG. 9. The plot of the temporal shear stress2Pxy versus shear

straing5tġ.

FIG. 10. The plot of the normal stress differencePyy2Pxx ver-

sus shear straing5tġ.
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We found thatR' remains a finite value in the steady sta
and depends on the shear rate asR';ġ21/3. The stringlike
patterns have not been observed experimentally in the
Reynolds number regime.

We have also studied rheological properties of the fl
mixture. Stress overshoots are observed atg.2, indicating
that the decomposing fluid mixture has viscoelastic cha
ter. Formation of domains leads to an initial increase in sh
stress, but subsequent domain deformation results in a
crease. The fluid mixture also exhibits notable no
Newtonian behavior. The shear thinning is observed eve
ġ50.02. In contrast, purely Newtonian behavior is observ
for ġ,0.1 for the one-component fluid. The excess viscos

FIG. 11. The steady-state shear viscosity versus the shear

Shear thinning is observed for the mixture atġ50.02. The one-

component fluid shows purely Newtonian behavior forġ<0.1. The
excess viscosityDh5hmix2hone accounts for most of the shea

thinning in hmix . The solid line describes a power lawDh;ġ2n

with n51/2.
.

d

v

tt
h

d

c-
ar
e-
-
at
d
y

Dh increases with decreasing shear rate and can be o
same order ashone at ġ50.02. Moreover,Dh can be fitted
by a power law,Dh;ġn with the exponentn.1/2, in both
ġtj,1 and ġtj.1 regimes. Finally, another power law
N1;ġm, is also found, wherem.1 for ġtj,1 and m

.1/2 for ġtj.1.
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